Window Function in SQL

1. What is a window function in SQL, and how does it differ from an
aggregate function?

Answer:

e Window Function: Performs a calculation across a set of rows that are related to the
current row, without collapsing the result into a single row.

e Aggregate Function: Aggregates multiple rows into a single output (e.g., SUM(),
AVG()).

Example:

SELECT name, salary, AVG(salary) OVER () AS avg_salary
FROM employees;

This calculates the average salary without collapsing rows.

2. Explain the use of ROW_NUMBER() in SQL and provide an example of
when you would use it.

Answer:

e ROW_NUMBER() assigns a unique sequential integer to rows within a partition, starting
from 1 for each partition.

Example: Find the top 3 highest-paid employees in each department.

SELECT name, department, salary,
ROW_NUMBER() OVER (PARTITION BY department ORDER BY salary
DESC) AS rank
FROM employees
WHERE rank <= 3;

3. How do RANK() and DENSE_RANK() differ in SQL? When would you use
each one?

Answer:

Window Function in SQL

e RANK(): Assigns a rank with gaps in ranking for ties.
DENSE_RANK(): Assigns rank without gaps.

Example:

RANK Example
SELECT name, salary, RANK() OVER (ORDER BY salary DESC) AS salary_rank
FROM employees;

DENSE_RANK Example
SELECT name, salary, DENSE_RANK() OVER (ORDER BY salary DESC) AS
salary_rank FROM employees;

4. Can you explain the purpose of PARTITION BY in a window function, and
how it affects the result?

Answer:

e PARTITION BY divides the result set into partitions and applies the window function
within each partition.

Example:

SELECT name, department, salary,

RANK() OVER (PARTITION BY department ORDER BY salary DESC) AS
department_rank
FROM employees;

This ranks employees within each department separately.

5. What is the difference between LAG() and LEAD() functions? How would
you use them in a real-world scenario?

Answer:

e LAG(): Returns the value of the preceding row.
e LEAD(): Returns the value of the following row.

Window Function in SQL

Example: Comparing each month’s sales with the previous month.

SELECT month, sales,
LAG(sales, 1) OVER (ORDER BY month) AS previous_month_sales
FROM sales_data;

6. How can you calculate a running total (cumulative sum) using a window
function in SQL?

Answer: You can use SUM() with OVER() clause.
Example:

SELECT name, salary,
SUM(salary) OVER (ORDER BY salary) AS running_total
FROM employees;

7. Write a query to calculate the moving average of sales over the last 3
months for each product.

Answer:

SELECT product_id, month, sales,

AVG(sales) OVER (PARTITION BY product_id ORDER BY month ROWS 2
PRECEDING) AS moving_avg
FROM sales_data;

This calculates a 3-month moving average (current month and 2 preceding months).

8. How would you calculate the percentage of total for each row using a
window function?

Answer:

SELECT name, salary,

Window Function in SQL

salary * 100.0 / SUM(salary) OVER () AS percent_of_total
FROM employees;

9. Explain the use of NTILE() function in SQL and provide an example
where it can be applied.

Answer:
e NTILE() divides rows into a specified number of roughly equal-sized buckets.

Example: Divide employees into 4 salary quartiles.

SELECT name, salary, NTILE(4) OVER (ORDER BY salary) AS
salary_quartile
FROM employees;

10. What is the difference between OVER() with PARTITION BY and OVER()
with ORDER BY?

Answer:

e PARTITION BY: Groups rows into partitions where the window function is applied
independently.
e ORDER BY: Orders rows within a partition to apply the window function.

Example:

SELECT name, salary, SUM(salary) OVER (PARTITION BY department ORDER
BY salary) AS running_total
FROM employees;

11. How would you calculate the first and last value in a partitioned dataset
using window functions?

Answer: You can use FIRST_VALUE () and LAST_VALUE () functions.

Window Function in SQL

Example:

SELECT name, salary,

FIRST_VALUE(salary) OVER (PARTITION BY department ORDER BY
salary) AS first_salary,

LAST_VALUE(salary) OVER (PARTITION BY department ORDER BY
salary) AS last_salary
FROM employees;

12. How can window functions help in calculating year-over-year growth in
a time series dataset?

Answer: You can use LAG() to compare the current year’s sales with the previous year.

Example:

SELECT year, sales,

(sales - LAG(sales, 1) OVER (ORDER BY year)) / LAG(sales, 1)
OVER (ORDER BY year) * 100 AS yoy_growth
FROM sales_data;

13. Given a table of employee salaries, how would you rank employees by
salary within each department using window functions?

Answer:

sql
Copy code
SELECT name, department, salary,
RANK() OVER (PARTITION BY department ORDER BY salary DESC) AS
department_rank
FROM employees;

Window Function in SQL

14. What are the performance considerations when using window functions
in large datasets, and how can you optimize them?

Answer:

e Performance Considerations:
o Window functions can be computationally expensive on large datasets.
o Sorting large partitions can be costly.
e Optimization:
o Ensure indexes are on partitioning and ordering columns.
o Minimize the number of rows in partitions.
o Use ROWS instead of RANGE when possible for performance gains.

15. How can you use window functions to identify duplicate rows or
records based on specific criteria?

Answer: You can use ROW_NUMBER () to identify duplicates.

Example:

WITH CTE AS (

SELECT name, salary, ROW_NUMBER() OVER (PARTITION BY name, salary
ORDER BY name) AS row_num

FROM employees

)
SELECT * FROM CTE WHERE row_num > 1;

This identifies duplicate rows based on the name and salary columns.

